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Abstract 29 

Urbanization alters species ranges and nature’s contributions to people, motivating urban 30 
conservation. Residential segregation policies have left an indelible impact on urban 31 
environments, greenspaces, and wildlife communities, creating socioeconomic heterogeneity and 32 
altering biota. However, the extent to which data sufficiently capture urban biodiversity patterns 33 
remains unclear, especially when considering historic segregation. We explore how biodiversity 34 
metrics (sampling density, estimated completeness of sampling, and expected species richness) 35 
vary by Home Owner’s Loan Corporation (HOLC) grade across taxonomic groups, leveraging 36 
nearly 60 million amphibia, aves, fungi, insecta, mammalia, plantae, and reptilia observations 37 
collected between 2000 and 2020, for 145 Metropolitan Statistical Areas in the United States. 38 
After accounting for environmental conditions, we estimate significant differences in sampling 39 
density across HOLC grade for all taxonomic groups, with the lowest values found in areas 40 
previously redlined. Estimated completeness of biodiversity inventory was low (average ~42% 41 
across all taxa) and varied significantly by HOLC grade for birds, mammals, and plants. Expected 42 
richness only varied by HOLC grade for birds. Our findings highlight how differences in 43 
biodiversity sampling may not translate to differences in expected species richness patterns, and 44 
suggest that applying insights obtained from certain taxonomic groups and extrapolating to 45 
multiple others may not be appropriate. Urban wildlife communities are not well-documented 46 
despite the explosion of digital information, and what is documented is known to be biased along 47 
a housing segregation typology for some taxon. These findings add evidence to suggest long-48 
lasting effects of legacies of segregation on the natural world. 49 
 50 
 51 
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Significance Statement 52 

Historic race-based zoning policies like redlining in the United States are associated with present 53 
day health, income, and environmental inequities. We quantify how redlining across 195 cities in 54 
the United States is also related to key biodiversity metrics across a wide range of vertebrate and 55 
invertebrate taxa, plants and fungi. We show that while more biodiversity records are consistently 56 
collected in non-redlined neighborhoods, this did not translate to differences in estimated species 57 
richness across redlining grades. This work underpins how legacies of segregation and 58 
socioeconomic inequality may influence the distribution and availability of data on urban 59 
biodiversity, and how such biased biodiversity data in turn may influence our inference on species 60 
communities, their food webs, and ultimately, conservation decisions. 61 
 62 
 63 
Main Text 64 
Introduction 65 
Global urbanization projections suggests a 55 to 111% increase in area, translating to a loss of 66 
11-33 million hectares of habitat from 2015 to the year 2100 (1). A key features of the 67 
Anthropocene is the increasing rise of urban life and urban expansion, with approximately half of 68 
humans residing in cities, which is projected to grow to 2/3 by 2050 (2). The last decade has seen 69 
an increased appreciation on the importance of urban biodiversity for promoting physical and 70 
psychological well-being of city residents (3). Cities are the places where human experiences with 71 
biodiversity increasingly occurs for most humans (4), and where a growing proportion of wildlife 72 
face urban pressures. Urbanization therefore poses both opportunities and challenges for 73 
biodiversity conservation (5), particularly given disparate responses of species and taxa to 74 
urbanization (6). As Lambert and Schell describe, “it is not hyperbolic to suggest that cities are 75 
situated as the literal and figurative frontlines of biodiversity conservation” (7). 76 
 Urban areas represent complex systems strongly shaped by social and economic factors 77 
that are often characterized by social inequity. Socioeconomic disparities are in turn associated 78 
with the spatial distribution of urban tree canopy cover, with higher income areas having more 79 
tree canopy, and minoritized communities having less (8–11). Tree canopy and urban green 80 
spaces provide crucial habitat for biodiversity, form the basis of more complex ecological 81 
communities, and shape urban food webs (11). Therefore the socioeconomic partitioning of urban 82 
spaces is expected to shape multiple facets of urban biodiversity (12–14), and even evolutionary 83 
processes and outcomes (12, 15–17). 84 

Simultaneously, urban areas are increasingly places of extensive biodiversity data 85 
collection, primarily through participatory-science and education initiatives leveraging mobile 86 
phone data collection apps (18). For some species, particularly in urban environments, volunteer-87 
collected data far exceed records museum collections (19). There are biodiversity data disparities 88 
within and across countries: higher income countries have more information (20, 21), and higher 89 
income areas within high income countries have the most (22). These data biases skew the our 90 
view of the natural world and mean that minoritized communities are often also data-poor (22–91 
24), which may represent another form of environmental injustice. 92 

Institutionalized racism is a major driver of social inequity, especially in cities (25). A 93 
spatial manifestation of institutionalized racism is housing segregation. One particularly well-94 
known mapping of this housing segregation in cities across the United States was the Home 95 
Owners’ Loan Corporation (HOLC) in the mid to late 1930s, commonly known as Redlining. The 96 
Home Owners’ Loan Corporation, with input from local real estate actors, categorized 97 
neighborhoods based on a combination of housing stock (type, quality, age), favorable adjacent 98 
land uses such as parks and open space, proximity to transit, and the demographic and racial 99 
characteristics of the inhabitants. A-Graded areas were composed of U.S.-born White families 100 
living in new, single-family detached homes, were labeled “Best” and colored green on the maps. 101 
B-Graded or blue areas, labeled “Still Desirable” had older and/or denser housing stock. C-102 
Graded or yellow areas, labeled “Definitely Declining” had more minoritized populations such as 103 
communities of color and/or immigrants. Finally, D-Graded or red areas, hence the name 104 
“redlining”, were labeled “Hazardous” and were composed of communities of color. It is important 105 
to note that the practices associated with redlining predate the maps. These practices are 106 
associated with covenants, codes, and restrictions (26); segregated newspaper advertisements 107 
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for housing, among many others. These practices began in the early 1900s and continue today 108 
(27–30). 109 

The urban ecology literature on redlining documents substantial disparities across 110 
neighborhood grades. Formerly A-Graded neighborhoods have more vegetation (31), more tree 111 
canopy (32–34), are cooler (35), and exhibit less noise pollution (36) than their formerly D-Graded 112 
counterparts. This means neighborhoods formerly comprised of US-born Whites in single family 113 
detached homes are more hospitable today – for both people and other species – than areas 114 
classified as “Hazardous”, marked red on maps by HOLC, and denied home loans, because they 115 
were occupied by poorer communities of color and immigrants living in denser, older housing. In 116 
Baltimore, MD, street trees are larger and more species diverse in A-Graded areas than their 117 
formerly D-Graded counterparts (37), so they produces more ecosystems services and are more 118 
resilient to urban forest pathogens. Redlined neighborhoods in California have higher pollution 119 
burdens, less vegetation, hotter temperatures, and more noise pollution than A-Graded areas 120 
(38). 121 

In addition to vegetation and street tree diversity, bird biodiversity data and species 122 
composition knowledge is significantly greater in A than D areas, with differences persisting even 123 
after controlling for population density, vegetation greenness, and protected open space (24). 124 
Moreover, field-based biodiversity assessments further showed that bird communities in Los 125 
Angeles vary across HOLC grades (39). For example forest birds and migratory birds were ~24% 126 
and ~17% more abundant, respectively, in formerly A- and B-Graded areas than C and D areas, 127 
while non-migratory, introduced, and synanthropic dominated C-, and D-Graded areas (39). With 128 
discrepancies between volunteered bird data A- and D-Graded areas growing over time (24), 129 
there is pressing need to understand how housing segregation and urban biodiversity data relate 130 
to additional taxa. Early multi-taxon work using the citizen science platform iNaturalist in four 131 
Californian cities, shows that redlined areas have a lower number of insects, birds, and mammals 132 
species, and that species composition vary by HOLC grade (40). 133 

This paper contributes to the ongoing efforts address questions and test hypotheses 134 
about housing segregation, specifically how race-based housing policies multiple facets of urban 135 
biodiversity (12). Synthesizing across platforms, the Global Biodiversity Information Facility 136 
(GBIF; https://www.gbif.org/) includes data from iNaturalist, eBird, other popular taxon-specific 137 
apps, as well as from participant node organizations composed of scientific research entities like 138 
universities and museums. Building off prior research, we leverage 58,920,460 species 139 
observations from GBIF (41) across metropolitan areas in the United States to assess how the 140 
amount of biodiversity information (sampling density), knowledge of species pools 141 
(completeness), and expected species richness varies by HOLC grades, Urban Areas (UAs) and 142 
Metropolitan Statistical Areas (MSAs). Sampling density answers the question about whether or 143 
not there are biodiversity data disparities today related to historic residential segregation. 144 
Completeness and expected species richness result from species accumulation curve 145 
extrapolations. These measures provide related estimations of unobserved biodiversity, and 146 
therefore address the question of how present-day biodiversity data and biodiversity patterns 147 
relate to historic housing segregation. The aims are therefore twofold: A) understanding data 148 
disparities and bias, and B) spatial variation in urban biodiversity. The HOLC classification system 149 
categorized residential neighborhoods in the mid-1930s, meaning un-graded areas were not yet 150 
urbanized or were urbanized but non-residential land uses. Focusing only on graded areas 151 
excludes most of present-day American cities. By adding the non-graded UAs and MSAs we 152 
provide two reference sets to contextualize HOLC neighborhoods in their larger urban contexts. 153 
This research thus broadens the taxa under investigation (amphibia, aves, fungi, insecta, 154 
mammalia, plantae, and reptilia) and uses a larger and more comprehensive set of species 155 
observations across multiple cities than previous related efforts (40), while adding UA and MSA 156 
comparisons. 157 
 158 
Results 159 
Biodiversity information across HOLC grades, Urban Areas (UA) and Metropolitan 160 
Statistical Areas (MSA) 161 
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Formerly A-Graded areas had significantly greater sampling density than D-Graded areas for all 162 
taxa except fungi (0.001 > p > 0.0001, Figure S1). A-Graded areas had greater sampling density 163 
than either UA (p < 0.0001) or MSAs (p < 0.0001) for all nine taxonomic groups. 164 
 Completeness estimates from species accumulation curves represent how many species 165 
are thought to be present, if exhaustive sampling occurred. Completeness estimates were low 166 
and did not vary by HOLC grade for amphibians, fungi (species or family), insects (species or 167 
family), mammals, or reptiles (p > 0.05). For birds, A had greater completeness than B (p < 0.05), 168 
C, and D (p < 0.001) neighborhoods). Conversely, completeness was greater in D than A-169 
neighborhoods for insects at the species level (p < 0.01) and among plants (p < 0.001). 170 
Completeness was greater in UAs and MSAs excluding previously HOLC-defined neighborhoods 171 
than A-Graded areas for all taxonomic groups (p < 0.0001). Expected richness did not vary by 172 
HOLC grade for taxonomic groups except for birds (p < 0.001) and plants (p < 0.05). Expected 173 
richness was always greatest among MSAs (p < 0.0001) and UAs (0.001 > p > 0.0001) than for 174 
HOLC-Graded areas. 175 
 176 
Predictions of biodiversity information, biodiversity knowledge, and species richness 177 
across HOLC grades and urban areas 178 
 Model predictions show significant differences (0.01 < p < 0.0001) in sampling density 179 
between formerly A-Graded neighborhoods and formerly D-Graded areas for all nine taxonomic 180 
groups (Figure 2, top). The amount of model-predicted biodiversity data varied widely by 181 
taxonomic group. For example, amphibian and reptile sampling density, though significantly 182 
different across A and D areas, were orders of magnitude lower than bird sampling density 183 
regardless of HOLC grade. 184 
 Overall average model-predicted estimated completeness in formerly HOLC-defined 185 
neighborhoods was 41.7%, and lower for insects (mean estimated completeness = 24.3%), fungi 186 
(31.1%), and plants (25.4%) —the most species rich taxonomic groups examined here (Figure 2, 187 
middle) across all HOLC grades. Model predictions showed significant differences in estimated 188 
completeness by HOLC grades A to D for birds (p < 0.0001), mammals (p < 0.05), and plants (p 189 
< 0.001), while the other six taxonomic groups were HOLC-invariant (p > 0.05). Birds where the 190 
only taxonomic group with significant differences in expected species richness across HOLC 191 
grades (Figure 2, bottom, p< 0.01).  192 
 193 
Discussion and Conclusions 194 

In this study we quantified how the race-based, housing segregation policy called 195 
redlining relates to the amount of biodiversity information and the number of expected species 196 
across multiple taxonomic groups encompassing nearly every facet of the tree of life. The goals 197 
to were to both understand data collection biases and differences in urban biodiversity across 198 
varied neighborhoods. Despite prior research on redlining and biodiversity in small geographic 199 
regions (40) or taxonomic focus (24, 39), it remained unclear if observed data disparities reflected 200 
a general patterns across multiple taxa and cities experiencing a broader range of climates and 201 
socioeconomic conditions. 202 

Sampling density was greater in formerly A-Graded neighborhoods than formerly D-203 
Graded neighborhoods for all taxonomic groups examined. Moreover, sampling density is greater 204 
in HOLC neighborhoods than their encompassing urban areas and metropolitan regions, while 205 
the reverse was true for estimated completeness and expected richness. Few prior investigations 206 
have included non-graded comparisons (39), despite calls to do so (30). These patterns are 207 
unsurprising given differences in population density across these places, which reduce sampling 208 
density among the larger and less population dense spatial units, reflecting the amount of data in 209 
areas with higher populations. It remains unclear why people choose to record biodiversity data in 210 
formerly A-Graded areas compared to formerly D-Graded areas. One explanation is that there is 211 
more green space and tree canopy in A than D-areas (31–34), making these more attractive 212 
places to travel to and sample. Alternatively, those observing urban biodiversity already 213 
predominantly reside disproportionately in formerly A-Graded areas. The combination of GBIF 214 
and HOLC polygons alone does not let us arbitrate between these rival and complementary 215 
explanations. 216 
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While sampling density differed across HOLC grades for all taxonomic groups, 217 
differences in regression-adjusted estimated completeness of biodiversity inventory were only 218 
found in birds, mammals, and plants. Differences in expected species richness across HOLC 219 
grades was unique to birds. The birdwatching community may promote collecting and sharing 220 
data more than for other taxa, and mammal identification is relatively easier. Plants are immobile, 221 
very species rich and hard to identify, while there are few urban mammal species. Insect and 222 
fugus identification is more challenging, and reptiles and amphibians are relatively more rare, 223 
especially in urban areas. These attributes may explain taxon-specific findings. Future studies 224 
may consider quantifying species abundances or densities with co-located measurements across 225 
taxanomic groups. This may allow for answering questions about whether communities and 226 
wildlife food webs vary by race-based policies, as proposed by Schell and colleagues in 2020 227 
(12). 228 
 229 
More sampling density in A-grade in all taxa 230 
Our findings that all taxonomic groups had higher sampling density in HOLC-A grade than in D-231 
Graded areas, corroborate the relationships found among birds in prior empirical research (24) 232 
and supporting expectations (12). This evidence further suggests how formerly redlined areas 233 
have not only fewer environmental amenities today (31–33), greater pollution loads (38), but also 234 
less information across nearly every facet of biodiversity. These differences persisted even after 235 
accounting for human population density, vegetation productivity, protected and accessible open 236 
space, and water cover. Similar findings were observed in four Californian cities across 6 clades, 237 
using only iNaturalist data, effectively a subset of GBIF (40). The data disparities found in the 238 
larger and more comprehensive GBIF data used here, and across a wider range of taxonomic 239 
groups, are reflected within a subset of participatory science platforms, when examining a smaller 240 
subset of species in a specific geographic location. 241 
 242 
Taxonomic groups differ in data availability and survey completeness 243 
Completeness estimates of biodiversity data varied across taxa. Fungi, insects, and plants had 244 
the lowest estimated completeness, yet are the most species-rich taxonomic groups on earth. Of 245 
the observations analyzed here, 87.6% were birds, 7.37% plants, 3.16% insects, the remaining 246 
~2% fungus, mammals, reptiles, and amphibians combined. To date, most urban ecology 247 
research has focused on birds and vascular plants (42), with invertebrates being among the least 248 
studies group (43). In addition, groups such as amphibians and reptiles remain even less-studied, 249 
despite being the vertebrate groups facing the highest rates of extinctions in the Anthropocene 250 
(44, 45). The taxonomic bias in urban ecology research remains a crucial knowledge gap, as 251 
identified by studies calling to include more taxonomic groups (46).Using estimated 252 
completeness, we show how the collective information on urban biodiversity differs across 253 
taxonomic groups. Specifically, we show higher survey completeness for birds, mammals, 254 
amphibians, and reptiles than plants, fungi and insects. Low levels of completeness in plants, 255 
fungi and insect likely do not accurately reflect species richness patterns, as these groups are 256 
species rich when compared to vertebrates and sampling density was relatively low – it is 257 
therefore challenging to disentangle these relationships. More comparative studies across 258 
multiple taxa, geographic areas, and over time in urban ecology might be considered a research 259 
priority (42). 260 
 261 
We did not observe significant differences in expected species richness by HOLC grade in any 262 
taxa except for birds (Figure 2). For example, our models predicted similar expected species 263 
richness across HOLC grades for birds than for insects and plants, despite there being orders of 264 
magnitude more described insect and plant species across the United States than bird species. 265 
For example, there are ~1,150 bird species in the USA, but ~91,000 insect species and 16,670 266 
vascular plant species (47–49). Our findings therefore may be reasonably indicative of the low 267 
sampling completeness among HOLC grades and the difficulty accurately identifying some 268 
species without molecular biology in plants, fungi and insects when compared to birds, mammals, 269 
reptiles and amphibians. Low sampling density, especially for species-rich groups, translates into 270 
low survey completeness and unrealistically low expected richness, severely limiting ecological 271 
inferences about actual community assemblages when using these types of data. Again, more 272 
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extensive and targeted, local field, possibly with taxonomic experts, sampling may prove pivotal 273 
to better understand current urban biodiversity patterns. 274 
 275 
Implications 276 
Taken together, our results suggest against extrapolating results of data availability and 277 
biodiversity patterns from one taxonomic group to another, particularly when making inferences 278 
on invertebrates, plants or fungi based on vertebrate biodiversity patterns. Similarly, our results 279 
highlight how findings on sampling density, completeness and richness of birds are not 280 
representative of other taxonomic groups in urban environments when using primarily 281 
synthesized participatory science data. Biodiversity data from birds in particular may be distinct 282 
from other taxa in several ways: a) birds have significantly more observations than other taxa, b) 283 
the spatial distribution of their biodiversity records and expected species richness is matched by 284 
the rank-order of the HOLC’s neighborhood ranking system, and c) birds are a highly mobile 285 
taxon. The rise of participatory science campaigns such as eBird and iNaturalist have led to a 286 
rapid and steady increase in the collection of such bird biodiversity data across the world, but 287 
participation and uptake is primarily by well-educated, white and affluent adults (50, 51). Future 288 
work could analyze the demographic profiles relatively small Census geographies like tracts or 289 
block groups in association with GBIF data to identify how present-day socioeconomic conditions 290 
relate to sampling density and urban biodiversity (22, 23). Concurrently, more research examining 291 
the socioeconomic and demographic composition at the individual observer level on who samples 292 
may reveal patterns and trends by taxonomic and social groups.  293 

While the increasing use of crowdsourced, geolocated bird data in scientific studies and 294 
conservation decisions has led to policy change in urban environments (52), observed trends of 295 
bird biodiversity may not necessarily reflect other taxonomic groups of vertebrates, invertebrates 296 
and plants. In an era of ambitious global conservation, careful consideration for how data 297 
availability across space impacts ecological inference differently across taxonomic groups, and 298 
impacts downstream uses is warranted (21). Future work may provide more in-depth exploration 299 
into specific facets of biodiversity utilizing other biodiversity data repositories, such as the BIEN 300 
database for plant-specific analysis (53). Ultimately, more long term and locally collected field 301 
data is likely needed to understand if and how species communities and food webs are impacted 302 
by socioeconomic conditions within and across cities. Moreover, how those relationships 303 
themselves vary with race-based housing segregation remains less clear. 304 

We are just beginning to understand how past and present practices of segregation and 305 
socioeconomic inequality have left (and are leaving) an indelible impact on the environment, 306 
urban wildlife communities, food webs, and their evolution (7, 12). Understanding the implications 307 
of these human dimensions could be critical for the equitable planning and execution of ambitious 308 
conservation and sustainability initiatives from local to national levels. Ecologists increasingly 309 
incorporate multiple aspects of human activities into biodiversity studies – from movement, to bi-310 
products such as nightlights, roads and population density and land use change (54). Yet, 311 
socioeconomic disparities in biodiversity data are an often overlooked, but critical dimension to 312 
consider when leveraging these data for ecological insights or decision making (21). Redlining 313 
was just one of many housing segregation practices, similar research could include Urban 314 
Renewal project locations (https://dsl.richmond.edu/panorama/renewal/#view=-7726.48/-315 
3679.22/11.13&viz=map&city=baltimoreMD&loc=13/39.2972/-76.5880).  316 

This work provides strong evidence of differences in where we collect information of 317 
biodiversity across multiple taxonomic groups across large spatial extents, filling important 318 
knowledge gaps in urban ecology and environmental justice research. Future researchers may 319 
consider exploring how functional and phylogenetic diversity of these taxonomic groups differs 320 
across urban environments, providing a more ecologically-rich context on how species 321 
communities vary within and across urban areas. Future researchers may consider including 322 
more measurements on where segregationist policies shaped the built and social environments, 323 
which in turn effects the ecological contexts for other species.  324 
  325 

https://dsl.richmond.edu/panorama/renewal/#view=-7726.48/-3679.22/11.13&viz=map&city=baltimoreMD&loc=13/39.2972/-76.5880
https://dsl.richmond.edu/panorama/renewal/#view=-7726.48/-3679.22/11.13&viz=map&city=baltimoreMD&loc=13/39.2972/-76.5880


 
 

7 
 

 326 
Materials and Methods 327 
Study Area 328 
We obtained biodiversity information for 195 cities with existing digitized HOLC polygons at the 329 
time of our analysis. In order to include non-graded areas as a reference, two Census-defined 330 
units were used: urban areas (UA), and Metropolitan Statistical Areas (MSA). Urban areas are 331 
the smaller spatial unit among the two, and created by aggregating Census blocks that have 332 
5,000 people or 2,000 housing units. MSA’s are aggregations of counties with at least 50,000 333 
people. UA and MSA boundaries were accessed via the `get_acs` function in the tidycensus 334 
package (55). Every MSA that contained digitized HOLC polygons that contained with GBIF data 335 
(n = 8,207) were included. The result was 145 MSAs, 147 UAs contained within 38 states, within 336 
195 HOLC-defined cities. When calculating the sampling density, completeness, and expected 337 
richness, HOLC polygons were erased from their containing UAs and MSAs to avoid double-338 
counting their biodiversity observations. 339 
 340 
Biodiversity Data 341 
 Biodiversity observations came from the Global Biodiversity Information Facility (GBIF, 342 
https://www.gbif.org/), via the `gbif_remote` function in the gbifdb R package (56). GBIF 343 
synthesizes disparate sources of biodiversity data from repositories ranging from participatory 344 
science apps to museum collections. Observations were filtered to observations containing 345 
georeferenced records collected between 2000 and 2020, that were not fossil specimens or 346 
material. The total number of observations (n = 58,920,460) per taxon downloaded were 347 
amphibia (n = 131,585), aves (n = 51,590,588), fungi (n = 577,360), insecta (n = 1,864,414), 348 
mammalia (n = 224,351), plantae (n = 4,342,105), reptilia (n = 190,057). HOLC polygons were 349 
obtained from the University of Richmond’s Mapping Inequality Project (57) via 350 
https://dsl.richmond.edu/panorama/redlining/static/fullDownload.geojson on December 8, 2022.  351 

The three dependent variables analyzed were sampling density, completeness, and 352 
expected richness. Sampling density was calculated as the number of observations records per 353 
square kilometer. Completeness (%) and expected species richness were calculated using 354 
species accumulation curves via the `KnowBPolygon` function in the KnowBR package (58). 355 
Completeness represents the percentage of all species estimated to be present given the 356 
observed GBIF observations within a spatial unit (HOLC polygon, Urban Area, or Metropolitan 357 
Statistical Area). Expected richness was calculated as by extrapolating species accumulation 358 
curves (58). 359 
 360 
Covariates 361 

In regression analyses, each of the dependent variables were modeled as a function of 362 
population density, vegetation cover, protected open space, and water cover. Prior research on 363 
birds and HOLC polygons has found significant relationship between human population density, 364 
NDVI, and open space with sampling density and percent estimated completeness (24). 365 
Additionally, it could be expected that places with more people could be more likely to have 366 
participatory science-collected biodiversity data since more potential observers are present. 367 
Population counts for HOLC polygons were interpolated using an area-weighted method, where 368 
the population was attributed by percent of polygon overlap (59) and year 2019 Census block 369 
groups accessed via the `get_acs` function in the tidycensus package (55). Normalized 370 
Difference Vegetation Index (NDVI) was computed using the mean of the average monthly 371 
MODIS (250m) data from 2015-2019. NDVI captures photosynthetically-active plants, and was 372 
included as a vegetation measure. The percent cover of protected open space was included 373 
because observers are likely to use parks and open space to collect data. We used a version of 374 
USGS’ Parks and Protected Areas Database of the United States (PAD-US) that was augmented 375 
to included accessible and recreational lands (PAD-US-AR), which is a more accurate and 376 
comprehensive representation of open space (60). Spatial water data came from the U.S. Fish 377 
and Wildlife Service’s National Wetlands Inventory (https://www.fws.gov/program/national-378 
wetlands-inventory/download-state-wetlands-data).  379 
 380 
 381 
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Statistical Analyses 382 
Two sets of statistical analyses were performed: 1) an unadjusted examination of each 383 
dependent variable for each taxonomic group by HOLC grade, UA, and MSA categories; and 2) 384 
regression analyses excluding UA- and MSA-observations but including continuous covariates. In 385 
both cases, sampling density and expected richness were log-transformed to approximate normal 386 
distributions. In the first set of analyses, each outcome in the A-Graded polygons was analyzed 387 
against the B-, C-, D-Graded, UA’s and MSA’s values in a series of 5 pair-wise Wilcoxon rank 388 
sum tests. Not all possible pairwise tests were performed, rather the endmember was compared 389 
against each other value; A serves as a reference and all other values referent. Figures S1-3 390 
show the entire distributions. 391 

Regression analysis incorporated all HOLC polygons, but omitted the UAs and MSAs. 392 
This is because UA and MSA represent large geographic areas with high levels of internal 393 
heterogeneity, making interpretations difficult. Within an MSA, the mean NDVI does not 394 
adequately represent the internal distribution which may have values of zero and one. A mean of 395 
0.5 would not faithfully characterize the region in social or ecological terms. Instead, each of the 396 
three dependent variable was analyzed for each of the nine taxonomic groups with three different 397 
regression model specifications. The first specification was the outcome as a function of the 398 
HOLC grade alone. This linear model is a baseline, simple model. The second specification 399 
added a random intercept for unobserved variability associated with each MSA. The third and 400 
most complex model adds continuous covariates to the mixed model to control for population 401 
density (people per km2), mean NDVI (a measure of vegetation greenness), protected accessible 402 
open space (%, from PAD-US-AR), and water cover (%, from the National Wetlands Inventory). 403 
The second and third specifications were fit with the lme4 package (61) in R. Per dependent 404 
variable and taxonomic group, the AIC minimization criteria was used to find the best fitting and 405 
parsimonious model among the three specifications. Model predictions were then derived with the 406 
`ggpredict` function and pairwise significance testing was applied using the `hypothesis_test` 407 
functions in the ggeffects package (62). 408 
 409 
Data and code availability 410 
Underlying raw data, the summarized analysis-ready data, and the R scripts for curating, 411 
compiling and conducting the final analyses will be freely available on an openly-accessible 412 
government data repository upon publication of this manuscript. This combination gives the 413 
broadest range of end users the most flexibility. 414 
 415 
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 566 
Figures and Tables 567 

 568 
Figure 1. Spatial extent of 195 cities assessed across the United States. I) Metropolitan 569 
Statistical Areas (MSAs; n = 145) included in the study. II) Within MSAs, Urban Areas are 570 
smaller, as defined by the US Census Bureau. Home Owners Loan Corporation are within UAs, 571 
which are in tern within MSAs, though there are a few instances where small parts of UA’s extend 572 
beyond an MSA boundary. 573 
 574 
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 575 
Figure 2. Model-adjusted predicted sampling density varies significantly across HOLC grade for all 576 
9 taxanomic groups (I). Overall estimated completeness is low, and only varies for aves, mammalia, 577 
and plantae (II). The observed differences in sampling density and estimated completeness to not 578 
translate to differences by HOLC Grade for expected richness except for birds (III). Note the 579 
different vertical axes lengths. 580 
 581 
 582 
 583 
SUPPLEMENTAL MATERIALS 584 
A Multi-taxa Analysis of Residential Segregation across the Urban United States 585 
 586 
1 USDA Forest Service, Northern Research Station, Baltimore Field Station, Suite 350, 5523 587 
Research Park Drive, Baltimore, MD21228, USA ORCID: 0000-0003-2704-9720 588 



 
 

13 
 

 589 
2 National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, 590 
Santa Barbara, CA, USA ORCID: 0000-0002-1377-1539 591 
 592 
3 Department of Ecology and Evolutionary Biology, Yale University, New Haven, USA ORCID: 593 
0000-0003-4766-021X 594 
 595 
Contents: 596 
Pages S1 – S15 597 
Table S1 598 
Figures S1 – S3 599 
 600 



 
 

14 
 

 601 
Table S1. Descriptive Statistics 602 

Characteristic 
amphibia: 
species, 
N = 5031 

aves: species, 
N = 7,7171 

fungi: family, 
N = 1,3741 

fungi: species, 
N = 1,3411 

insecta: family, 
N = 4,4731 

insecta: species, 
N = 4,4321 

mammalia: 
species, 

N = 1,9431 

plantae: species, 
N = 5,7741 

reptilia: species, 
N = 8611 

Sampling Density (log) 0.55 (-0.16, 1.23) 4.38 (3.16, 5.49) 1.04 (0.31, 1.87) 1.05 (0.31, 1.88) 1.93 (1.12, 2.86) 1.93 (1.12, 2.88) 1.06 (0.36, 1.83) 2.26 (1.40, 3.31) 1.06 (0.26, 1.85) 

Estimated 
Completeness 

56 (40, 69) 58 (38, 74) 39 (28, 49) 29 (18, 40) 36 (24, 48) 23 (15, 35) 48 (40, 65) 22 (13, 39) 62 (42, 76) 

    Unknown 360 1,327 842 910 1,945 2,407 1,054 2,930 460 

Expected Richness 
(log) 

1.70 (1.26, 2.12) 4.44 (4.06, 4.81) 2.88 (2.13, 3.49) 3.47 (2.63, 4.19) 3.64 (3.06, 4.09) 4.47 (3.78, 5.07) 2.01 (1.60, 2.53) 4.72 (4.04, 5.32) 1.90 (1.33, 2.26) 

    Unknown 360 1,327 842 910 1,945 2,407 1,054 2,930 460 

HOLC Grade          

    A 95 (19%) 929 (12%) 214 (16%) 211 (16%) 555 (12%) 552 (12%) 274 (14%) 726 (13%) 132 (15%) 

    B 140 (28%) 2,009 (26%) 397 (29%) 383 (29%) 1,208 (27%) 1,198 (27%) 578 (30%) 1,530 (26%) 244 (28%) 

    C 177 (35%) 3,010 (39%) 524 (38%) 514 (38%) 1,796 (40%) 1,782 (40%) 761 (39%) 2,325 (40%) 305 (35%) 

    D 91 (18%) 1,769 (23%) 239 (17%) 233 (17%) 914 (20%) 900 (20%) 330 (17%) 1,193 (21%) 180 (21%) 

Population / km^2 647 (313, 1,259) 1,324 (659, 2,694) 852 (410, 1,650) 845 (408, 1,636) 1,012 (513, 1,991) 1,009 (513, 1,978) 855 (438, 1,667) 1,137 (578, 2,283) 798 (389, 1,578) 

NDVI (mean) 0.43 (0.35, 0.50) 0.41 (0.32, 0.48) 0.40 (0.29, 0.49) 0.40 (0.29, 0.49) 0.40 (0.30, 0.47) 0.39 (0.30, 0.47) 0.38 (0.28, 0.47) 0.40 (0.31, 0.48) 0.37 (0.28, 0.46) 

Protected Open, 
Accessible Space (%) 

2.5 (0.9, 7.3) 1.5 (0.1, 4.4) 2.6 (0.9, 6.4) 2.6 (0.9, 6.4) 1.9 (0.5, 5.0) 1.9 (0.5, 5.0) 2.4 (0.8, 5.6) 1.8 (0.4, 4.8) 1.7 (0.4, 4.8) 

Water (%) 0.19 (0.00, 0.97) 0.00 (0.00, 0.67) 0.02 (0.00, 0.67) 0.02 (0.00, 0.67) 0.00 (0.00, 0.62) 0.00 (0.00, 0.62) 0.01 (0.00, 0.69) 0.00 (0.00, 0.65) 0.09 (0.00, 0.69) 
1 Median (IQR); n (%) 

603 
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 604 
Figure S1. Sampling Density (the number of volunteered-collected observations per area) vary 605 
by Home Owners Loan Corporation neighborhoods, with areas formerly A-Graded having more 606 
biodiversity information than areas formerly D-Graded for all taxon except for fungi at both 607 
species and family levels. Sampling density in HOLC polygons, was greater than their 608 
encompassing Census-defined Urban Areas (UA) and Metropolitan Statistical Areas (MSA).  609 
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 610 
Figure S2. When sampling density is used to estimate percent completeness, few statistically 611 
significant differences emerged. A-Graded areas have more complete biodiversity data than D-612 
Graded areas for birds (aves), but the association is reversed for insects (at species and family 613 
levels) and for plants. The percent completeness is relatively low overall, and especially for 614 
insects, fungus, and plants. Despite fewer observations per area for sampling density, the percent 615 
completeness is greater in Urban Areas and Metropolitan Statistical Areas than HOLC polygons, 616 
owing to their larger size.   617 
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 618 

 619 
Figure S3. Only Aves and Plantae expected richness vary by HOLC grade, the other taxon are 620 
invariant to the neighborhood classification system.621 
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# end April 22, 2024 622 


